中国炼铁网欢迎您!

中国炼铁网

当前位置: 主页 > 技术文摘库 >

高炉炉顶不同形式布料溜槽炉料分布计算结果

时间:2019-05-06 14:10来源:河北钢铁集团邯钢公司炼 作者:司俊朝 魏航宇 点击:
摘 要 炉顶布料制度是高炉最重要的制度,而布料溜槽的形式对布料存在关键性影响,目前溜槽形式有横截面半圆形溜槽和方形,本文通过对两种溜槽的进行了对比,通过matlab软件模拟
  • 摘  要  炉顶布料制度是高炉最重要的制度,而布料溜槽的形式对布料存在关键性影响,目前溜槽形式有横截面半圆形溜槽和方形,本文通过对两种溜槽的进行了对比,通过matlab软件模拟计算找出了不同溜槽的布料特点,为溜槽的使用和角度选择提供了依据。

    关键词  高炉  溜槽  matlab


    1  概述

    邯钢炼铁部五高炉有效容积为2000m3高炉,2005年由1260m3高炉改造而成,采用全皮带上料,炉顶并罐式料罐。并罐布料偏析是由于炉料进入料罐后流动产生粒级偏析,布料过程中料流在溜槽上偏析布引起,主要表现在炉料在料面上的落点轨迹和圆周方向的料流流量[1],并罐形式炉顶布料由于料罐中心线与产生较大偏析,由于并列料罐的布置,炉料从料流阀流出后下落到中心喉管,在中心喉管偏行,这样在溜槽一圈的旋转中,炉料落到溜槽上的速度和落点都不同,这就导致炉料在料面上的质量分布不均匀[2],但由于布料过程中产生一定的布料偏析,特别是由于半圆形圆周摩擦力较小,导致炉料布料落点范围较宽,休风后发现整个溜槽中部出现炉料摩擦的痕迹,说明整个布料过程炉料已经出现脱离溜槽布料控制的情况,高炉后期通过对矿批和焦批的调整后取得了一定的效果,但矿批和焦批有一定的局限性。后设计使用方溜槽,方形溜槽由于边缘直角形,边缘力较大,可以将炉料很好控制,落点较集中,但由于前期没有使用过方溜槽,布料角度和矿批等都需要从新衡量,因此对两种溜槽进行了模型计算。

    2  布料溜槽模拟计算

    2.1圆形溜槽布料情况

    圆形布料溜槽示意图及相关受力分析见图1。

    blob.png

    2.1.1  圆形溜槽布料数值设定

    由于炉料落点主要受离开溜槽时的速度影响,因此对溜槽尾端炉料速度进行分解研究,可将炉料离开溜槽后速度分为x,y,z三个方向上的抛物自由落体运动,其中的vx,、vy、vz;设定料线为H,Q为炉料流量kg/s,S为料流开口面积m2,ρ为密度kg/m3,高炉布料溜槽转速 圈/7.5s,中心喉管高度h为2m,a为旋转溜槽倾角,λ为消减系数。;α(°)为旋转溜槽倾角; L0 (m)为溜槽有效长度;ω(rad/s)为溜槽旋转角速度;μ为溜槽对炉料的摩擦系数。高炉布料相关情况见表1。

    blob.png

    2.1.2  圆形布料溜布矿模型计算

    圆形布料溜槽布矿模型计算公式及相关参数:

    Vk1= 

    Vk2= (Vk1* Vk1+0.5*g*h)1/2

    VK3=λ* Vk2*cosa

    VK4= (2*g*(cosα-μ*sinα)*L0+4*π2*ω2*sinα*(sinα+μ*cosα) *L02+v32)1/2

    Vx=Vk4*sina

    Vy=Vk4*cosa

    圆溜槽计算时最高点和最低点的炉料所围成区域组成炉料布料区域,5高炉目前使用圆溜槽半径0.97m,计算横截面积0.3695m2,由于炉料面积0.0629 m2,如炉料堆积过程中两端呈直角,则炉料堆积面积为0.0671 m2,与炉料横截面积较为接近,因此本模型取炉料两端为直角。通过角速度w和溜槽长度计算出最高点位于0.44m,最低点处于溜槽横截面中心,本次计算忽略溜槽本身厚度影响,计算如表1,通过MATLAB模拟计算51和50度角时最远位置布料、最近位置和料宽见表2。

    blob.png

    2.1.3  圆形布料溜槽布焦模型计算

    圆形布料溜布焦模型计算公式及相关参数:

    VJ1= 

    VJ2= (VJ1* Vk1+0.5*g*h)1/2

    VJ3=λ* VJ2*cosa

    VJ4= (2*g*(cosα-μ*sinα)*L0+4*π2*ω2*sinα*(sinα+μ*cosα) *L02+v32)1/2

    Vx=VJ4*sina

    Vy=VJ4*cosa

    通过MATLAB模拟计算51和50度角时最远位置布料、最近位置和料宽见表3。

    blob.png

    2.2  方形溜槽布料情况

    方形布料溜槽示意图及相关受力分析见图2。

    blob.png

    2.2.1  方形溜槽布料数值设定

    设定料线为H,Q为炉料流量kg/s,S为料流开口面积m2,ρ为密度kg/m3,高炉布料溜槽转速 圈/7.5s,中心喉管高度h为2m,a为旋转溜槽倾角,λ为消减系数。;α(°)为旋转溜槽倾角;L0 (m)为溜槽有效长度;ω(rad/s)为溜槽旋转角速度;μ为溜槽对炉料的摩擦系数。

    blob.png

    2.2.2  方形布料溜布矿模型计算

    方形布料溜布焦模型计算公式及相关参数:

    Vk1= 

    Vk2= (Vk1* Vk1+0.5*g*h)1/2

    VK3=λ* Vk2*cosa

    VK4= (2*g*(cosα-μ*sinα)*L0+4*π2*ω2*sinα*(sinα+μ*cosα) *L02+v32)1/2

    Vx=Vk4*sina

    Vy=Vk4*cosa

    方溜槽计算时最高点和最低点的炉料所围成区域组成炉料布料区域,5高炉目前备用方溜槽长3m,内壁宽0.97m,外壁宽1.2m,高0.67m,其中下部壁厚0.14m, 计算横截面积0.35141m2,由于炉料面积0.0629 m2,与炉料横截面积较为接近,因此本模型取炉料两端为直角。计算出最高点位于0.35m,最低点处于溜槽横截面中心,通过MATLAB模拟计算51和50度角时最远位置布料、最近位置和料宽见表4。

    blob.png

    2.2.3  方形布料溜布焦模型计算

    方形布料溜布焦模型计算公式及相关参数

    VJ1= 

    VJ2= (VJ1* VJ1+0.5*g*h)1/2

    VJ3=λ* VJ2*cosa

    VJ4= (2*g*(cosα-μ*sinα)*L0+4*π2*ω2*sinα*(sinα+μ*cosα) *L02+v32)1/2

    Vx=VJ4*sina

    Vy=VJ4*cosa

    通过MATLAB模拟计算51和50度角时最远位置布料、最近位置和料宽见表5。

    blob.png

    3  不同布料溜槽模型计算结果对比

    3.1布矿情模型计算结果对比

    圆形溜槽布矿模型模拟轨迹如图3,方形溜槽布矿模型模拟轨迹如图4。

    blob.png

    从图3和图4看51度角调度最外炉料落点圆形溜槽较方形溜槽靠近炉墙,布料角度相差1度圆溜槽炉料分布相差小1.2mm,随着布料角度的缩小,两种溜槽的布料宽度都有所增加,结果如下:

    (1)圆溜槽布料角度相差1度炉料分布相差76mm,方溜槽布料角度相差1度炉料分布相差77.2mm;

    (2)圆溜槽最远点较方溜槽最远点远69mm;

    (3)圆溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约11mm;

    (4)方溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约9.8mm;

    3.2  布焦情模型计算结果对比

    圆形溜槽布焦模型模拟轨迹如图5,方形溜槽布焦模型模拟轨迹如图6;

    blob.png

    从图5和图6看51度角调度最外炉料落点圆形溜槽较方形溜槽靠近炉墙,布料角度相差1度圆溜槽炉料分布相差小1.8mm,随着布料角度的缩小,两种溜槽的布料宽度都有所增加,结果如下:

    (1)圆溜槽布料角度相差1度炉料分布相差72.6mm,方溜槽布料角度相差1度炉料分布相差74.4mm,

    (2)圆溜槽最远点较方溜槽最远点远67mm;

    (3)圆溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约9.4mm;

    (4)方溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约7.6mm;

    4  结语

    (1)圆形溜槽布料同样角度炉料落点较方形溜槽距炉墙更近;布焦炭圆溜槽最远点较方溜槽最远点远67mm;布矿圆溜槽最远点较方溜槽最远点远69mm

    (2)圆形溜槽布料角度相差1度较方形溜槽布料宽度小,布焦角度相差1度相差小1.8mm,布矿角度相差1度相差小1.2mm;

    (3)无论方形溜槽还是圆形溜槽,随着布料角度递减过程,炉料落点宽度都有所增加,圆形溜槽增加幅度更大,圆形溜槽布矿随1度角增加约11mm、布焦增加9.4mm,方形溜槽布矿随1度角增加约9.8mm、布焦增加7.6mm;

    5  参考文献

    [1] 并罐式无钟炉顶布料蛇形偏料的研究[J]. 杜鹏宇,程树森,滕召杰.  北京科技大学学报. 2011(04)

    [2] 无钟并罐式高炉周向不均匀布料的研究[J]. 任廷志.  钢铁研究学报. 1999(03)

    (责任编辑:zgltw)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
织梦二维码生成器